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Abstract. In this note we classify smooth surfaces with geometric genus
equal to three admitting an action of a group G isomorphic to Zk

p , with p

being a prime number, such that the quotient is a plane.

1. Introduction

We classify all smooth surfaces with geometric genus equal to three admitting
an action of a group G isomorphic to Zkp, with p being a prime number, such that
the quotient is a plane. We call such surfaces smooth (k, p)-covers of the plane of
geometric genus three.

Following [8], then each smooth (k, p)-covers of P2 is built by a set of alge-
braic data that uniquely identifies the cover. Such algebraic data consists of the
components {Dg}g∈Zkp of the branch locus of the quotient map X → P2 and a

collection of line bundles {Lχ}χ∈Zkp of P2 fitting in a set of linear equations, those

of Theorem 2.2.
Hence a classification of smooth (k, p)-covers means that we determine from the

linear equations of Theorem 2.2 all the possibilities of the algebraic data {Dg}g∈Zkp
and {Lχ}χ∈Zkp .

Following the same technique in [4], it is possible to translate those algebraic data
to define any (k, p)-cover by equations in suitable weighted projective spaces.

A classification for p = 2 and any natural integer k is already available in
[4], hence, whenever not specified, we assume in this note p ≥ 3. The main
argument of [4] for which the classification has been accessible was the formula in
[4, Theorem 1.11]. This formula computes the numerical class of all divisors Dg

by the characteristic line bundles Lχ, if the Galois group is of the form Zk2 . Hence
the authors first compute the possible Lχ, that is easy, and then deduce from it
the class of each divisor Dg. However, formula [4, Theorem 1.11] is not true for
a general abelian group, since different numerical class of divisors may give the
same characteristic sheaves Lχ, see [4, Example 1.7].
In this note we deduce a general formula (2.6) for an abelian group, and then we
specialize it to the group G = Zkp (see (2.8)). We observe that this is the formula
of [4, Theorem 1.11] whenever p = 2. Although such formula can not permit to
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compute the numerical class of each divisor Dg in function of the sheaves Lχ, we
get from it some crucial constraints on the natural integers k and p for which a
classification is feasible (see in order Proposition 4.5, Proposition 4.6 and Theorem
4.14).

We find four families of smooth (k, p)−planes of geometric genus three, that
together with the eleven ones obtained in [4], provides a complete classification of
smooth (k, p)-planes of geometric genus three.

The main result of this note is the following Theorem 4.22.

Theorem. Let p ≥ 3 be a prime number. All smooth (k, p)-covers X of the plane
with geometric genus 3 have p = 3 and are regular surfaces with ample canonical
class.

They form 4 unirational families, that we labeled as A1, A2, B3, C2, in a way
that A1 is a family of triple planes, A2 and C2 are two families of bi-triple planes
and B3 is a family of (3, 3)-planes.

The degree of the canonical map ϕKX is constant in each family.
We summarize in the following table the modular dimension (the dimension

of its image in the Gieseker moduli space of the surfaces of general type) of each
family, and the values of K2

X and degϕKX of each surface in the family: The

Family A1 A2 B3 C2

mod. dim. 19 7 3 7
K2
X 3 9 3 9

degϕKX 3 9 3 3

canonical map is a morphism of degree K2
X on P2 unless X of type C2, in which

case the canonical map is a rational map of degree K2
X − 3 · 2 = 3 undefined at 3

points.

The building algebraic data {Dg}g∈Zkp , {Lχ}χ∈Zkp can be found in propositions

4.6, 4.17, and 4.19.

Notation. The notation is the same as [4, Chapter 1]. Thus, a Galois cover is a
finite morphism π : X → Y among algebraic varieties with the property that there
is a subgroup G of Aut(X) such that π factors as the composition of the quotient
map X → X/G with an isomorphism X/G ∼= Y . We will always assume Y to be
irreducible, whereas we find it convenient for the general theory of Galois covers
not to do any analogous assumption for X. The finite group G is the Galois group
of π.

An abelian cover is a Galois cover whose Galois group is an abelian group.
A (k, p)-cover is an abelian cover whose Galois group is isomorphic to Zkp. A

(k, p)-plane is a (k, p)-cover of P2.

2. Abelian covers

In this section we collect some known results on abelian covers. The novelty
is formula in Theorem 2.8, which is a natural generalization of that present in
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[4, Theorem 1.11] to any abelian group. We are going to use the same notation of
[4] and we remind to the reader only the most important facts on abelian covers;
for more details see [8] and [4].

Definition 2.1. Let π : X → Y be an abelian cover with Galois group G, Y
smooth and X normal. Fix an element g ∈ G and a character χ ∈ G∗. Let o(g)
be the order of g. Then there exists a unique integer 0 ≤ rχg ≤ o(g)− 1 such that

χ(g) = er
χ
g · 2πio(g) .

Given a further character χ′ ∈ G∗ we set moreover

εgχ,χ′ =

{
1 if rχg + rχ

′

g ≥ o(g)

0 else
.

Theorem 2.2 ([8, Theorem 2.1 and Corollary 3.1]). Let π : X → Y be an abelian
cover with Galois group G, Y smooth and X normal.

Then for all χ, χ′ ∈ G∗

(2.1) Lχ ⊗ Lχ′ ∼= Lχ·χ′ ⊗OX

∑
g∈G

εgχ,χ′ ·Dg

 .

Conversely, given an abelian group G and a smooth irreducible variety Y assume
that we have

a line bundle Lχ on Y for each character χ ∈ G∗ and
an effective divisor Dg for all g ∈ G

satisfying (2.1), and with the property that the divisor D =
∑
Dg is reduced.

Then there is a unique Galois cover π : X → Y whose Galois group is G, and
whose building data are the Lχ and the Dg, such that X is normal.

Equation (2.1) shows that the divisors Dg determine the line bundles Lχ up
to torsion as follows.

Definition 2.3. For all χ set Lχ ∈ Pic(Y ) = Div(Y )/ ∼ for the divisor class of
the invertible sheaf Lχ. We use the additive notation for the torsion product in
Pic(Y ).

Corollary 2.4 (see [8, Proposition 2.1]).

o(χ)Lχ ≡
∑
g∈G

o(χ)rχg
o(g)

Dg.

In particular

Lχ ≡num
∑
g∈G

rχg
o(g)

Dg.

In particular, if Pic(Y ) is torsion free (for example if Y is rational) then the
divisors do determine the line bundles.
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In the next sections we are going to walk in the opposite direction: first we
look for the ”good” possible Lχ and then we find suitable divisors Dg realizing
them.

Of course the divisors will be free to move in their linear equivalence class. We
find it important to notice that for general G the line bundles Lχ do not determine
even the linear equivalence class of the divisors Dg. In fact this fails already for
cyclic groups of order 5 or more, see for instance the [4, Example 1.7].

In contrast, we show in the forthcoming Theorem 2.9 that when G ∼= Zkp the
Lχ determine the linear equivalence class of the divisors

∑
h∈〈g〉Dh, g ∈ G, up to

torsion. In particular, for p = 2 we get the already proved [4, Theorem 1.11], for
which any Dg is uniquely determined by the Lχ.

We first need some lemmas for general abelian covers.

Definition 2.5. The natural isomorphism G → G∗∗ allows each g in G to be
considered as a character of G∗, which we will also denote by g, by setting

g(χ) = χ(g).

Then ker g is the subgroup of G∗ of the characters χ such that χ(g) = 1. In other
words

χ ∈ ker g ⇔ g ∈ kerχ.

Let H be a subgroup of G∗, possibly of the form ker g. For all g ∈ G we will
denote by g|H the element of H∗ obtained restricting g to H.

Lemma 2.6. [4, Lemma 2.9] For all g ∈ G, for each subgroup H of G∗,

(2.2)
∑
χ∈H

rχg =
|H|
2
o(g)

(
1− 1

o(g|H)

)
In particular

(2.3)
∑
χ∈G∗

rχg =
|G|
2

(o(g)− 1) .

It follows that

Proposition 2.7. [4, Prop. 2.10]

(2.4)
∑
χ∈G∗

Lχ ≡num
|G|
2

∑
g∈G

(
1− 1

o(g)

)
Dg.

Moreover, for every g ∈ G,

(2.5)
∑

χ∈ker g

Lχ ≡num
|G|

2o(g)

∑
h∈G

(
1− 1

o(h| ker g)

)
Dh.

The main result of this chapter is
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Theorem 2.8. Let π : X → Y be a G-cover, Y smooth and X normal, with set
of data Lχ, Dg. Then for all subgroup H of G∗

(2.6)
|G|
2

∑
g∈G

(
1

o(g|H)
− 1

o(g)

)
Dg ≡num

∑
χ 6∈H

Lχ − ([G∗ : H]− 1)
∑
χ∈H

Lχ.

Proof. Consider a subgroup H of G∗. Then by (2.2), one has

(2.7)
∑
χ∈H

Lχ ≡num
∑
χ∈H

∑
g∈G

rχg
o(g)

Dg

 ≡num ∑
g∈G

1

o(g)

∑
χ∈H

rχg

Dg

≡num
|H|
2

∑
g∈G

(
1− 1

o(g|H)

)
Dg.

Using (2.7) and (2.4) we obtain

|G|
2

∑
g∈G

(
1

o(g|H)
− 1

o(g)

)
Dg ≡num

|G|
2

∑
g∈G

(
1− 1

o(g)

)
Dg −

|G|
2

∑
g∈G

(
1− 1

o(g|H)

)
Dg

≡num
∑
χ∈G∗

Lχ − [G∗ : H]
∑
χ∈H

Lχ

≡num
∑
χ 6∈H

Lχ − ([G∗ : H]− 1)
∑
χ∈H

Lχ.

�

Corollary 2.9. Let π : X → Y be a Zkp−cover, Y smooth and X normal, with set
of data Lχ, Dg. Then for all subspace H of G∗ of codimension t, we have

pk−1(p− 1)

2

∑
h∈H⊥

Dh ≡num
∑
χ 6∈H

Lχ − (pt − 1)
∑
χ∈H

Lχ.

In particular, given g ∈ G, g 6= 0, and setted H := ker g, then the above formula
becomes

(2.8)
pk−1(p− 1)

2

∑
h∈〈g〉

Dh ≡num
∑

χ 6∈ker g

Lχ − (p− 1)
∑

χ∈ker g

Lχ.

Proof. We notice that for all h in G, then o(h|H) equals 1 if h ∈ H⊥, and is equal

to p otherwise. Hence the sum of the left member of (2.6) is on H⊥. Since H is a
subspace of codimension t, then it has order pk−t, and so its index in G∗ amounts
to [G∗ : H] = pt.

The second equation of the statement follows once one observes that if H =
ker g, thenH⊥ = 〈g〉. Indeed, the inclusion 〈g〉 ⊆ H⊥ is straightforward, whilst the
other direction holds directly by using that each character defined over a proper
subgroup can be extended to a non-trivial character of the entire group. �

Now we give a formula useful to determine the characteristic e(X) of a smooth
abelian cover with Galois group G of a smooth algebraic surface Y .
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Proposition 2.10. Let π : X → Y be a smooth abelian cover with Galois group
G and Y smooth. Let D =

∑
gDg be the branch locus of π. Then

(2.9) e(X) =

|G|

e(Y )−
∑
g

(
1− 1

o(g)

)
e(Dg) +

1

2

∑
g 6=h

(
1− 1

o(g)

)(
1− 1

o(h)

)
Dg ·Dh

 .

Proof. e(X) = n0−n1 +n2−n3 +n4 where ni is the number of cells of dimension
i. We can choose a particular cellular decomposition on Y such that

• The intersection points between Dg and Dh are 0-cells of the decomposi-
tion;
• The cellular decomposition of Y induces a cellular decomposition on each
Dg;
• The cells are contained on some Dg or they do not touch the branch locus
D.

Such particular decomposition on Y induces via pre-image a cellular decomposition
on X. If the covering π is not ramified, then any cell on Y is counted exactly |G|-
times on X, hence e(X) = |G|e(Y ).

Instead, if the covering is ramified, then we have to add a correction term.
Any 2-cell is counted |G| times except for the components Dg of the branch locus,

that is counted |G|
| Stab(Dg)| = |G|

o(g) -times. Hence to |G|e(Y ) we have to subtract the

correction term ∑
g

(
|G| − |G|

o(g)

)
e(Dg).

However, there is another correction term to consider, since the 0-cells are counted
|G|-times except for the intersection points p of Dg ∩Dh, g 6= h. Indeed, they are

counted |G|
| Stab(p)| = |G|

|〈g,h〉| -times. Since the covering is smooth, then [8, Proposition

3.1] implies 〈g, h〉 = 〈g〉 ⊕ 〈h〉, and so |〈g, h〉| = o(g)o(h).
Hence the last correction term to add is

1

2

∑
g 6=h

((
|G| − |G|

o(g)

)
+

(
|G| − |G|

o(h)

)
−
(
|G| − |G|

o(g)o(h)

))
Dg ·Dh.

�

We finish the section with a remark on the Galois covers of Y = P2.

Remark 2.11. Any Galois cover π : S → P2 have irregularity zero.
Indeed, from the Leray spectral sequence, then

H1(S,OS) ∼= H1(P2, π∗OS) ∼=
⊕
χ

H1(P2,L−1χ ).

Since every line bundle of P2 has trivial first cohomology group, then h1(S,OS) =
0.



NOTES ON SMOOTH (k, p)-COVERS OF THE PLANE OF GEOMETRIC GENUS THREE 7

3. The canonical system of an abelian cover

A canonical divisor KX on a normal variety X is a Weil divisor, the closure of
a canonical divisor of the smooth part of X (see [7, (1.5)]).

If π : X → Y is a G−cover, then G acts on π∗ (OX(KX)) inducing a decom-
position on it in eigenspaces

π∗(OX(KX)) =
⊕
χ∈G∗

π∗(OX(KX))(χ)

Theorem 3.1 ([1, Proposition 2.4], see also [8, Proposition 4.1, c) for the case
when X is smooth]). Let π : X → Y be an abelian cover, with X normal and Y
smooth, whose building data are Lχ and Dg. Then

(3.1) (π∗OX(KX))(χ) ∼= OY (KY )⊗ Lχ−1 .

Consider a global section σ ∈ H0(OY (KY )⊗Lχ−1), and let (σ) ∈ Div(Y ) be the
induced effective divisor. By (3.1) σ determines an element of H0(π∗OX(KX)) ∼=
H0(OX(KX)), whose divisor is, by the proof of [1, Proposition 2.4] (compare also
[6, Section 3.4]),

(3.2) π∗(σ) +
∑
g

(o(g)− rχ
−1

g − 1)Rg.

4. Smooth (k-p) planes with pg=3

Definition 4.1. A smooth (k, p)-plane is a (k, p)-cover π : X → P2 such that
all Dh are smooth, each two of them intersect transversally, and no point in P2

belongs to three of them. Furthermore we require that

(4.1) 〈g〉 ∩ 〈h〉 = {0}.

for any pairwise g and h with Dh, Dg 6= 0, h 6= g.
Notice that the branch divisor D =

∑
Dg is a smooth normal crossing divisor.

The assumption ensures the smoothness of X.

Proposition 4.2. Let π : X → P2 be a smooth (k, p)-plane. Then X is smooth.

Proof. This is a special case of [8, Proposition 3.1]. �

Notation 4.3. It is convenient to consider G and G∗ as vector spaces over the
field with p elements. We are thus going to switch to the additive notation, so for
example the sheaf L1 will be L0 from now on, and for each character χ we will
write −χ for the character that was called χ−1 in the previous section.

Denote by e1, · · · , ek the standard basis of G = Zkp and by ε1, . . . , εk the dual
basis of G∗.

To every (k, p)-plane π : X → P2 we consider its building data Lχ, Dg and the
numbers

dg := degDg, lχ := degLχ.
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Note that d0 = l0 = 0.
Note moreover that since G = Zkp, for each χ ∈ G∗, (p − 1)χ = −χ. We will

use this often in the following computations.

Definition 4.4. We will say that a smooth (k, p)-plane with pg = 3 is

of type A if lε1 = 4, lχ ∈ {1, 2} for all χ 6= ε1
of type B if lχ1

= lχ2
= lχ3

= 3, lχ ∈ {1, 2} for all χ 6= χ1, χ2, χ3.

For a smooth (k, p)-plane π : X → P2

(4.2) pg(X) = h0(OX(KX)) = h0(π∗(OX(KX))) =
∑
χ∈G∗

h0(OP2(lχ − 3)),

so in all cases of Definition 4.4 we obtain pg(X) = 3. Conversely

Proposition 4.5. Up to automorphisms of G every smooth (k, p)-plane with
pg(X) = 3 falls in one of the two cases in Definition 4.4.

Proof. Since X is connected, for all χ 6= 0, H0(L−1χ ) = 0 and thus lχ > 0.
By (4.2) lχ ≤ 4 and either there is only one χ with lχ ≥ 3, in which case lχ = 4,

or there are three χ with lχ ≥ 3, all with lχ = 3.
Using an automorphism of G, we can reduce the former case to ”type A”. �

We can now classify the (k, p)-planes with pg(X) = 3 considering separately the
cases in Definition 4.4. We remember that we assume p ≥ 3 since a classification
for p = 2 is already available, see [4].

For type A we obtain a special case of the situation classified in [3, Theorem
1.1].

Proposition 4.6. The generic (k, p)-planes of ”type A” form 2 families, the first
with (k, p) = (1, 3) and the second with (k, p) = (2, 3).

In both cases π is the canonical map of X, |KX | = |π∗OP2(1)| is base point
free and

l0 = 0 lε1 = 4 lχ = 2 for all remaining χ

dg = 2 · 32−k for ε1(g) = 2, dg = 0 otherwise.

Proof. By (2.1), for all χ ∈ G∗, we have

lχ + l(p−1)χ+ε1 = lε1 +
∑
g∈G

εgχ,(p−1)χ+ε1dg ≥ lε1 = 4.

Since for χ distinct to 0, ε1 we have lχ ≤ 2, it follows lχ = 2.
By Theorem 2.9, for all g 6∈ ker ε1, then

pk−1(p− 1)

2

∑
h∈〈g〉

dh =
∑

χ 6∈ker g

lχ − (p− 1) ·
∑

χ∈ker g

lχ

=
(
4 + (pk−1(p− 1)− 1) · 2

)
− (p− 1)

(
0 + (pk−1 − 1) · 2

)
= 2 + 2(p− 1) = 2p
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Therefore ∑
g∈〈h〉

dg =
2

pk−1(p− 1)
2p =

4p2−k

p− 1
,(4.3)

that is an integer for p ∈ {2, 3, 5}.
Note also that for all g ∈ ker ε1, we have

pk−1(p− 1)

2

∑
h∈〈g〉

dh =
(
(pk−1(p− 1)) · 2

)
− (p− 1)

(
4 + (pk−1 − 1− 1) · 2

)
= 0.

(4.4)

Hence dg = 0, for all g ∈ ker ε1.
Since we have assumed p ≥ 3, then we may have only p equal either to three

or four. Furthermore, (4.3) gives for p ≥ 3 the constriction k ≤ 2.
We use (2.4) to obtain

pk−1(p− 1)

2

∑
g

dg = 4 + 0 + 2 · (pk − 2) = 2pk =⇒
∑
g

(p− 1)dg = 4p.

However, dh = 0 for all g ∈ ker ε1, hence we can say∑
g/∈ker ε1

(p− 1)dg =
∑
g

(p− 1)dg = 4p.

By the other side, we have also

4p = plε1 =
∑

g/∈ker ε1

ε1(g)dg

hence∑
g/∈ker ε1

ε1(g)dg = 4p =
∑

g/∈ker ε1

(p− 1)dg =⇒
∑

g/∈ker ε1

(p− 1− ε1(g))dg = 0.

This gives dg = 0 for each g having ε1(g) 6= p− 1, while

dg =
∑
h∈〈g〉

dh =
4p2−k

p− 1
for ε1(g) = p− 1.

Now it is useful to notice that 4p2−k

p−1 is an integer only for p ∈ {2, 3, 5}. Since we

have assumed p ≥ 3, then we may have only p equal either to three or five. For
p = 3 we obtain the two families of the statement. We notice that from (3.2) both
the families have canonical system base point free and equal to |π∗OP2(1)|.

We have only to discuss the remain families for p = 5. These families are
excluded since any surface X of the family have geometric genus more than 3.
Indeed, we have

5l2ε1 =
∑
g

ε1(2g)dg =
∑
g

3dg = 3
∑
g

dg = 3 · 4p

p− 1
= 3 · 5.

Thus, l2ε1 = 3, so that pg(X) ≥ 4. �
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It remains to discuss only the (k, p)−planes of ”type B”. In order to do this,
we first give some preliminary results.

Lemma 4.7. Any generic (k, p)-plane satisfies the condition

G = 〈g | dg 6= 0〉.

In particular, we have

k ≤ |{g ∈ G|dg 6= 0}|.

Proof. The set of elements g ∈ G such that dg 6= 0 contains a set of generators
for G. Indeed, if by contradiction G 6= 〈g : dg 6= 0〉 then we can select a character
χ 6= 0 vanishing on 〈g : dg 6= 0〉 and then the Pardini equation 2.4 would give
lχ = 0. This contradicts the fact X is connected.

Furthermore, in our case G ∼= Zkp, and so the cardinality of a minimal set of
generators of G equals the exponent k. �

Lemma 4.8. There exists a family of smooth (k, p)-planes X satisfying the con-
dition

k + 1 = |{g ∈ G|dg 6= 0}| =
∑
g

dg

if and only if k ≥ 2.
Moreover, this family is unique up to isomorphisms of G, and it is defined by
choosing the building data as follows

de1 = · · · = dek = d(p−1)
∑
k ek

= 1, and dg = 0 otherwise.

In particular, the geometric genus of X equals

pg(X) =
1

12
pk−2

(
(k − 2)(3k − 5)

2
p2 − 3(k + 1)(k − 2)p+

(k + 1)(3k + 2)

2

)
− 1.

Remark 4.9. The constructed family is a particular case of surfaces already
studied by Hirzebruch in [5]. Moreover, using formulas [5, p. 124] for K2

X and
e(X), then one can compute the geometric genus of X.

We point out that a proof on the existence and uniqueness of the family can
be given also by applying [2, Lemma 3.8 and Theorem 3.11].

However, we think that it can be useful for the comprehension of the rest of
the section to give a short proof of this lemma.

Proof. Up to isomorphisms of G, we have

(4.5) de1 = de2 = · · · = dek = dg = 1 and dh = 0 otherwise

for a suitable g ∈ G. It is easy to determine the unique g ∈ G for which Pardini
equations 2.4 are satisfied:

plεj = 1 + εj(g) ≤ 1 + (p− 1) = p =⇒ lεj = 1 and εj(g) = p− 1.

We have obtained

g =
∑
j

εj(g)ej = (p− 1)
∑
j

ej .



NOTES ON SMOOTH (k, p)-COVERS OF THE PLANE OF GEOMETRIC GENUS THREE 11

The case k = 1 is excluded from the smoothness of X since we would have de1 =
d(p−1)e1 = 1 and this would contradict (4.1).

It remains to compute the geometric genus of X. Since X is a Galois cover
of P2, then it has irregularity zero, from the Remark 2.11. This together with
Noether formula give

pg(X) = χ(OX)− 1 =
1

12
(K2

X + e(X))− 1.

Hence we just need to compute K2
X and e(X).

Firstly, we determine K2
X using [8, Proposition 4.2]:

K2
X = pk

(
−3 +

(p− 1)

p
(k + 1)

)2

= pk−2 ((k − 2)p− (k + 1))
2
.

We determine e(X) by applying the formula of Proposition 2.10:

e(X) = pk−2
(

(k − 1)(k − 2)

2
p2 − (k + 1)(k − 2)p+

k(k + 1)

2

)
.

�

We have a stronger condition for (k, p)-planes of ”type B”.

Proposition 4.10. Any generic (k, p)-plane of ”type B” satisfies the condition

k + 2 ≤
∑
g

dg.

Proof. From the Lemma 4.7 we get

k ≤ |{g ∈ G|dg 6= 0}| ≤
∑
g

dg.

The case k =
∑
g dg is not possible otherwise there would exist exactly k elements

of G with dg 6= 0 and that are generating G, so they are linearly independent.
Moreover, all of them have dg = 1. Then, up to isomorphisms of G, we say

de1 = de2 = · · · = dek = 1, and dg = 0 otherwise.

This gives a contradiction since

plε1 = de1 = 1.

It remains to exclude the case k + 1 =
∑
g dg. We have to distinguish

|{g ∈ G|dg 6= 0}| = k or |{g ∈ G|dg 6= 0}| = k + 1.

The first case is not possible since up to isomorphisms of G

de1 = de2 = . . . dek−1
= 1, dek = 2 and dg = 0 otherwise.

In this case, we would have plε1 = 1.
Instead, in the second case we fall in the hypothesis of the Lemma 4.8. Hence

firstly we have k ≥ 2. If k = 2, then the geometric genus of X equals pg(X) =
(k+1)(3k+2)

24 − 1 = 0, which is not admissible.
Instead, if k ≥ 3, then is straightforward to see pg(X) ≥ 4 by using the formula

of Lemma 4.8. �
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Notation 4.11. Given a Galois covering of P2, we denote by l the number of
χ ∈ G∗ such that lχ = 1.

Proposition 4.12. The generic (k, p)-planes of ”type B” satisfy the condition∑
g

dg = 4 +
2(2pk−1 + 1− l)
pk−1(p− 1)

.

Proof. We apply the Proposition 2.4 for G ∼= Zkp to obtain

pk−1(p− 1)

2

∑
g

dg =
∑
χ

lχ = 3 · 3 + 0 + 2(pk − (l + 4)) + l = 2pk + 1 − l.

Hence ∑
g

dg =
2(2pk + 1− l)
pk−1(p− 1)

= 4 +
2(2pk−1 + 1− l)
pk−1(p− 1)

.

�

Corollary 4.13. Smooth (1, p)-planes of ”type B” do not exist. In other words,
k ≥ 2.

Proof. The case p = 3 is obvious, since k = 1 and G ∼= Z3 is a group of cardinality
3 that can not satisfy the condition to being of ”type B”.

Hence we suppose p ≥ 5. Since G is a cyclic group and the (1, p)-plane is
smooth, so the condition (4.1) has to be satisfied, then there is at most one je1
has dje1 6= 0. This implies dje1 =

∑
g dg = 4 + 2(3−l)

(p−1) from the Proposition 4.12.

We note that for p ≥ 7 then

dje1 = 4 +
2(3− l)
p− 1

≤ 4 +
6

p− 1
≤ 5 < p.

However, we would have

plε1 = jdje1 =⇒ p | djej ,

that is a contradiction.
For p = 5, then 0 ≤ l ≤ p− 4 = 1 and so dje1 = 4 + 3−l

2 is an integer only for
l = 1. In this case, then dje1 = 5 and lε1 = j implies j = 1 or j = 3. If j = 1, then
l4ε1 = 4, which is not possible, while if j = 3, then l3ε1 = 4, that is not possible
too. In other words, the case p = 5 does not occur. �

Theorem 4.14. Any generic (k, p)−plane of ”type B” falls in one of the following
cases

a1) p = 3 and k ∈ {2, 3},
∑
g dg = 5, l = 3k−1 + 1;

a2) p = 3 and k ∈ {2, 3, 4},
∑
g dg = 6, l = 1;

b) p = 5, and k ∈ {2, 3},
∑
g dg = 5, l = 1;

c) k = 2,
∑
g dg = 4, l = 2p+ 1;
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Proof. From the propositions 4.10 and 4.12 we get

(4.6) k + 2 ≤
∑
g

dg = 4 +
2(2pk−1 + 1− l)
pk−1(p− 1)

which implies for l = 2pk−1 + 1 that k ≤ 2 and
∑
g dg = 4. Moreover, k = 2 from

the Corollary 4.13.
Furthermore, for p ≥ 7 there are no other possibilities than k = 2 and

∑
g dg = 4.

Indeed from the Corollary 4.13 we have k ≥ 2 and so (4.6) gives

4 ≤ k + 2 ≤ 4 +
2(2pk−1 + 1− l)
pk−1(p− 1)

=⇒ 2(2pk−1 + 1− l)
pk−1(p− 1)

≥ 0

so 2(2pk−1+1−l)
pk−1(p−1) is a non negative integer. However, we observe

(4.7)
2(2pk−1 + 1− l)
pk−1(p− 1)

≤ 4

p− 1
+

2

pk−1(p− 1)

which is less than 1 for p ≥ 7. This forces 2(2pk−1+1−l)
pk−1(p−1) being equal to zero, so that

l = 2pk−1 + 1, k = 2,
∑
g dg = 4.

Instead, for p = 3, 5 more cases may occur. For p = 5 then (4.7) tells us

another possibility is 2(2pk−1+1−l)
pk−1(p−1) equal to 1, that it happens for l = 1. In this

case, then (4.6) gives k ≤ 3,
∑
g dg = 5.

Finally, for p = 3 then (4.7) tells us other two possibilities are 2(2pk−1+1−l)
pk−1(p−1)

either equal to 1 or 2. In the first case, we have l = 3k−1 + 1, k ≤ 3,
∑
g dg = 5,

whilst in the second case we have l = 1, k ≤ 4,
∑
g dg = 6. �

Notation 4.15. We fix a notation similar to [4, Not. 3.9]. The weight (w1(g), w2(g))
of an element g = (g1, . . . , gk) ∈ Zkp is a pair where w1(g) is the number of gi dif-
ferent from zero, and w2(g) is the sum of the entries gi of g. For instance, given
k = p = 3, then the weight of g = (1, 2, 2) is (3, 5).

We apply this notation to both the elements of G and G∗.

Before to discuss any case of Theorem 4.14 we give the following useful remark,
for p = 3.

Remark 4.16. Assume that p = 3. Given χ such that lχ = 1, then l2χ ∈ {1, 2}.
Indeed, from 2.4 we have

3 = 3lχ =
∑
g

χ(g)dg.

The number 3 can be written only either as 1 + 1 + 1 or 1 + 2 or 3, so either it
there exists g1, g2, g3 such that χ(gi) = dgi = 1 for any i or it there exists g1, g2
such that χ(g1) = dg1 = 1 and χ(g2)dg2 = 2, or there is only one g with χ(g) = 1
and dg = 3.
In the first and third case we would have l2χ = 2, whilst in the second case
l2χ ∈ {1, 2}.
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Proposition 4.17. The generic (k, p)-planes of the case a1) of Theorem 4.14
form one family, with k = p = 3. These surfaces have a canonical system that is
base point free and

lχ = 3 if w1(χ) = 1, lχ = 1 if w1(χ) = 2 lχ = 2 otherwise;

and w2(χ) = 1 and w2(χ) ≤ 3

or χ = 2(ε1 + ε2 + ε3)

dg = 1 if w1(g) = 3, dg = 2 if g = 2(e1 + e2 + e3), dg = 0 otherwise.

and w2(g) = 5

Proof. (k, p)-planes of ”type B” have three character χ1, χ2, χ3 with lχi = 3. This
forces l2χi = 2 for any i = 1, 2, 3. Indeed, the Equation 2.1 applied to χ = χi and
χ′ = 2χi gives

(4.8) 3 + l2χi = lχi + l2χi = 0 +
∑

g/∈kerχi

dg ≤
∑
g

dg = 5 =⇒ l2χi ≤ 2.

However, l2χi equal to 1 is excluded since otherwise lχi = l2(2χi) would be either
1 or 2 from the Remark 4.16.

We have then one element 0 with l0 = 0, 3k−1 + 1 elements χ having lχ = 1,
at least three 2χi having l2χi = 2, and others three χi having lχi = 3. In total
they are 1 + 3k−1 + 1 + 3 + 3, which is either 11 or 17. This excludes k = 2 since
G ∼= Z2

3 consists of only nine elements.
Hence we assume k = 3. From Lemma 4.7 then we need at least three elements

g1, g2, g3 having dgi 6= 0.
We claim that the number of elements g with dg 6= 0 is not three. Indeed, if

there are exactly three elements g1, g2, g3 with dgi 6= 0, then they form a basis of
G ∼= Z3

3.
Up to relabel gi, we only may have either dg1 = dg2 = 1, dg3 = 3 or dg1 = 1, dg2 =
2, dg3 = 2. This gives a contradiction since if η1, η2, η3 is the dual basis of g1, g2, g3,
then 3lη1 = dg1 = 1.

Hence the number of elements g with dg 6= 0 is at most four.
We observe that the Equation (4.8) implies

∑
g/∈kerχi dg =

∑
g dg = 5, so that

any g ∈ G for which dg 6= 0 does not vanish on χi, for any i = 1, 2, 3.
However, if χ3 ∈ 〈χ1, χ2〉, then there are exactly 2 ·2 ·3−2 ·3 = 6 elements that

does not vanish on χi. We can select from this set at most 3 elements g1, g2, g3
satisfying the smoothness condition (4.1) for which 〈gi〉∩〈gj〉 = {0} and such that
dgi 6= 0. Hence the case χ3 ∈ 〈χ1, χ2〉 has to be excluded.

Let us discuss the case χ1, χ2, χ3 are linearly independent. Here the number of
elements not vanishing on χi is 23 = 8. Hence we can select from this set at most
4 elements g1, . . . , g4 satisfying 〈gi〉 ∩ 〈gj〉 = {0} and with dgi 6= 0. As already
observed above, we can not choice less than four elements, so they are exactly
four. Furthermore, up to relabel gi, we only may have

dg1 = dg2 = dg3 = 1, and dg4 = 2.
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Now we use the equation of Corollary 2.4 to obtain

6 = 3l2χi = χi(2g1) + χi(2g2) + χi(2g3) + 2χi(2g4).

This gives χi(2g4) = 1 and from the smoothness condition (4.1) we also deduce,
up to relabel g1, g2, g3, that χi(2gi) = 2, χi(2gj) = 1, j 6= i. In other words, if we
fix the dual basis of χ1, χ2 and χ3, then we get

g1 = (1, 2, 2), g2 = (2, 1, 2), g3 = (2, 2, 1), and g4 = (2, 2, 2).

By (3.2) the canonical system |KX | is generated by the following three divisors

Rg1 , Rg2 , and Rg3

and then from the smoothness assumption the base locus is empty. In other words,
|KX | is base point free. �

Remark 4.18. Let us consider a generic (k, p)−plane of type ”B” having l = 1,
and so falling in one of the cases a2) with p = 3 or b) with p = 5 of Theorem 4.14.

l = 1 means that there exists only one χ ∈ G∗ such that lχ = 1. Let χ1, χ2, χ3 ∈
G∗ be the characters with lχi = 3. Let us define

α := |{χ1, χ2, χ3} ∩ 〈χ〉|.

We apply Theorem 2.9 to H = 〈χ〉 to obtain

pk−1(p− 1)

2

∑
g∈kerχ

dg =
∑
η/∈〈χ〉

lη − (pk−1 − 1)
∑
η∈〈χ〉

lη

= 3 · (3− α) + 2 · (pk − p− (3− α))− (pk−1 − 1) · (1 + 3 · α+ 2 · (p− 2− α))

= (3− α)pk−1.

Thus

(4.9)
∑

g∈kerχ

dg =
2(3− α)pk−1

pk−1(p− 1)
=

2(3− α)

p− 1
.

If p is equal to three, then we have α = 0 and
∑
g∈kerχ dg = 3. In fact, the only

possible values of α are either 0 or 1, and α = 1 is not possible since lχ = 1 implies
l2χ ∈ {1, 2}, from the Remark 4.16.

Instead, if p is equal to five, then the values of α for which 2(3−α)
p−1 is an integer

are either 1 or 3.

Proposition 4.19. The generic (k, p)-planes of the case a2) of Theorem 4.14
form one family, with k = 2 and p = 3. These surfaces have a canonical system
that is not base point free and

lχ = 3 if χ(e2) = 1, lε1 = 1 lχ = 2 otherwise;

dg = 1 if ε1(g) = 1, d2e2 = 3 dg = 0 otherwise.
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Proof. From the Remark 4.18 we have {χ1, χ2, χ3}∩ 〈χ〉 = ∅ and
∑
g∈kerχ dg = 3.

Let g 6∈ kerχ and denote by β = β(g) ∈ {0, 1, 2, 3} the number of χi with
lχi = 3 vanishing on g. Then Theorem 2.9 applied to H = ker g gives

pk−1(p− 1)

2

∑
h∈〈g〉

dh = 1 + 3 · (3− β) + 2(pk − pk−1 − 1− (3− β))

− (p− 1)(3β + 0 + 2(pk−1 − 1− β))

= 10− 3β + 2pk−1(p− 1)− 8 + 2β − β(p− 1)

+ 2pk−1(p− 1) + 2(p− 1)

= (2− β)p

that implies ∑
h∈〈g〉

dh =
2(2− β)

p− 1
p2−k = (2− β)32−k.

This excludes β equal to three. Furthermore, it has to exists at least one g 6∈ kerχ
such that β = β(g) 6= 2 otherwise we would have

6 =
∑
g

dg =
∑

g∈kerχ

dg +
∑

g 6∈kerχ

dg = 3 + 0 = 3.

Hence it there exists g 6∈ kerχ for which β is equal either to 0 or to 1. In any case,
this forces k = 2.

Moreover, k = 2 tells us kerχ is a cyclic group and since
∑
g∈kerχ dg = 3, then

from the smoothness condition (4.1) we may only have one g1 ∈ kerχ for which
dg1 = 3.

From Lemma 4.7, then the number of g with dg 6= 0 is at least 2. Furthermore,
the numbers of lines of G ∼= Z2

3 is four, so from the smoothness condition (4.1) we
can select at most four gi with dgi 6= 0. In other words, we are saying that

|{g : dg 6= 0}| ∈ {2, 3, 4}.

The case equal to 2 is not possible since 3 + dg2 = dg1 + dg2 =
∑
g dg = 6 and

so dg2 = 3. However, g1 and g2 form a basis of G and so if η1 and η2 is the dual
basis, then we would get

3lηi = dgi = 3 =⇒ lηi = 1

that contradicts the assumption l = 1.
The case equal to 3 means that there are g2 and g3 such that dg2 = 1 and

dg3 = 2, both not vanishing on χ. Then

3 = 3lχ = χ(g2) + χ(g3)2

which forces χ(g2) = χ(g3) = 1. Instead, we have

9 = 3lχ1 = χ1(g1)3 + χ1(g2) + χ1(g3)2.

which forces χ1(g2) = χ1(g3).
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However, we have already observed χ1 is not a multiple of χ, hence χ1 and
χ form a basis of G∗. Then χ(g2) = χ(g3) and χ1(g2) = χ1(g3) implies g2 = g3,
which does not provide a smooth (k, p)-plane.

It remains the case for which there are g2, g3, g4 with dgi 6= 0 all not vanishing
on χ. They all have dgi = 1. Then

3 = 3lχ = χ(g1) + χ(g2) + χ(g3) =⇒ χ(gi) = 1.

However, since χ and χ1 form a basis of G∗ and we are looking for (k, p)-planes
which are smooth, namely when (4.1) is satisfied, then we may only have in the
dual basis on G

g2 = (1, 0), g3 = (1, 1), and g4 = (1, 2).

Finally, we use

9 = 3lχ1 = χ1(g1)3 + 3 =⇒ χ1(g1) = 2

to deduce g1 = (0, 2).
By (3.2) the canonical system |KX | is generated by the following three divisors

2Rg2 +Rg3 , Rg2 + 2Rg4 and, 2Rg3 +Rg4

and then by the smoothness assumption the base locus is the schematic intersection

Rg2 ∩Rg3 , Rg2 ∩Rg4 , and Rg3 ∩Rg4 .

The lines Dg2 , Dg3 , Dg4 intersect pairwise transversally in one point. Above each of
the intersection point Dgi∩Dgj there is only one point of X, stabilized by the entire
group 〈gi, gj〉 = G, the intersection point Rgi ∩ Rgj , for any i, j ∈ {2, 3, 4}, i 6= j.
A straightforward local computation shows that Rgi and Rgj are transversal. �

The rest of this section aims to prove that the remain cases of Theorem 4.14
do not provide others smooth (k, p)-planes of ”type B”.

Proposition 4.20. The case b) of the Theorem 4.14 does not occur.

Proof. The Remark 4.18 gives

{χ1, χ2, χ3} ⊆ 〈χ〉 or |{χ1, χ2, χ3} ∩ 〈χ〉| = 1,

so we have to distinguish these two cases.
In the first case, then

∑
h∈kerχ dh = 0, from the Remark 4.18.

Let us consider g /∈ kerχ. We apply Theorem 2.9 to H = ker g to obtain

pk−1(p− 1)

2

∑
h∈〈g〉

dh = 1 + 3 · 3 + 2 · (pk − pk−1 − 4)− (p− 1) · (0 + 2 · (pk−1 − 1))

= 10− 8 + 2pk−1(p− 1)− 2pk−1(p− 1) + 2p− 2

= 2p.

Thus ∑
h∈〈g〉

dh =
4p2−k

p− 1
= 52−k.
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This forces k = 2,
∑
h∈〈g〉 dh = 1. We note that for k = 2 the complement of the

kernel of χ consists of 20 elements and so we can select from it at most 5 elements
satisfying the smoothness condition (4.1). However,

∑
g dg = 5, and each selected

element would give a contribution to the sum equal to 1.
This forces to select exactly five elements g1, . . . , g5 all not vanishing on χ, having
dgi = 1, and satisfying (4.1).

Furthermore, we have

5 = 5lχ =

5∑
i=1

χ(gi)dgi =

5∑
i=1

χ(gi) =⇒ χ(gi) = 1, i = 1, . . . 5.

From the condition (4.1), in the dual basis of a completion to base of χ, we would
have

g1 = (1, 0), g2 = (1, 1) g3 = (1, 2), g4 = (1, 3), g5 = (1, 4).

However, this gives
5ljχ = 5 · j =⇒ ljχ = j,

that is a contradiction since l3χ = 3 and l4χ = 4. This would give a (k, p)-plane
not of geometric genus three, and so not of ”type B”.

Let us consider now the case where there is only one χi ∈ 〈χ〉, let us say χ3.
In this case, (4.9) becomes

∑
g∈kerχ dg = 1.

We prove

(4.10) kerc χ ∩ kerχ1 ⊆ kerχ2.

Let us choose g ∈ kerc χ∩kerχ1 and suppose g /∈ kerχ2. Then we apply Theorem
2.9 to H = ker g to obtain

pk−1(p− 1)

2

∑
h∈〈g〉

dh = 1 + 3 + 3 + 2(pk − pk−1 − 3)− (p− 1)(0 + 3 + 2(pk−1 − 2))

= 1 + 2pk−1(p− 1) + p− 1− 2pk−1(p− 1)

= p.

Hence ∑
h∈〈g〉

dh =
2p2−k

p− 1
=

52−k

2

that is not possible. Hence (4.10) follows.
Let us take now g ∈ kerc χ∩kerc χ2. Then g /∈ kerχ1 from (4.10), and we have

pk−1(p− 1)

2

∑
h∈〈g〉

dh = 1 + 3 + 3 + 3 + 2(pk − pk−1 − 4)− (p− 1)(0 + 2(pk−1 − 1))

= 2 + 2pk−1(p− 1) + 2p− 2− 2pk−1(p− 1)

= 2p.

Thus ∑
h∈〈g〉

dh = p2−k = 52−k = 1
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that forces k = 2. Then k = 2 implies (4.10) means kerχ1 = kerχ2, or in other
words χ2 ∈ 〈χ1〉.

Let us choose now g ∈ kerc χ∩kerχ1. Then applying Theorem 2.9 to H = ker g
we obtain easily

pk−1(p− 1)

2

∑
h∈〈g〉

dh = 1 + 3 + 2(pk − pk−1 − 2)− (p− 1)(3 + 3 + 0 + 2(pk−1 − 3))

= 2pk−1(p− 1)− 2pk−1(p− 1)

= 0.

Then

5 =
∑
g

dg =
∑

g∈kerχ

dg+
∑

g∈kerc χ∩kerχ1

dg+
∑

g∈kerc χ∩kerc χ1

dg = 1+
∑

g∈kerc χ∩kerc χ1

dg

=⇒
∑

g∈kerc χ∩kerc χ1

dg = 4.

This means there should be exactly four elements g1, . . . , g4 all not vanishing on
χ and χ1 such that dgi = 1. Let us denote by g5 ∈ kerχ the unique element such
that dg5 = 1.

Furthermore, k = 2 implies that the cardinality of kerc χ ∩ kerχ1 is pk−1 −
pk−2 = 5 − 1 = 4, and so this set equals kerχ1 \ {0}. Then (4.10) permits to
conclude kerχ1 = kerχ2, and so that χ2 ∈ 〈χ1〉.

Now we observe

5 = 5lχ = χ(g1) + · · ·+ χ(g4) + 0

and so, up to relabel g1, . . . , g4, we have χ(g1) = χ(g2) = χ(g3) = 1, and χ(g4) = 2.
This gives also

5ljχ = 3j + [2j]5

so that χ3 = 4χ. Furthermore, since χ and χ1 are linearly independent and k = 2
then they generate G∗ and so from the smmoothness condition (4.1) we have
χ1(g1),χ1(g2) and χ1(g3) are are pairwise distinct. Then up to isomorphisms of G
we can assume

χ1(g1) = 2, χ1(g2) = 3 and χ1(g3) = 4.

Moreover, this forces χ1(g4) = 2 since g4 is chosen to being not a multiple of each
one among g1, g2, g3.

We can now compute χ1(g5), which is

15 = 5lχ1
= 2 + 3 + 4 + 2 + χ1(g5) =⇒ χ1(g5) = 4.

In other words, fixing the dual basis of χ, χ1 on G, then the only solution up to
isomorphisms of G is given by

g1 = (1, 2), g2 = (1, 3), g3 = (1, 4) g4 = (2, 2), and g5 = (0, 4).

However,

5lχ+χ1
= 3 + 4 + 0 + 4 + 4 =⇒ lχ+χ1

= 3
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and so we would have l4χ = lχ1
= l2χ1

= lχ+χ1
= 3. This means that the

(k, p)−plane constructed has not geometric genus three, and so is not of ”type
B”. �

Proposition 4.21. The case c) of the Theorem 4.14 does not occur.

Proof. The case p = 3 is obviously excluded since the group G = Z2
3 consists of 9

elements and we are requiring that 2p + 1 = 7 elements have lχ = 1, three have
lχ = 3, and l0 = 0.

We are going to construct all (2, p)−planes with
∑
g dg = 4 and then prove

that no one of these have geometric genus three, and so they are not of ”type B”.
Since

∑
g dg = 4, then from Lemma 4.7 there are four possibilities, up to

isomorphisms of G:

de1 = 2, de2 = 2, or de1 = 1, de2 = 3, or de1 = de2 = 1, dg = 2,

or de1 = de2 = dg1 = dg2 = 1.

The first two cases are easily not admissible because we would have plε1 = de1 .
The third case is more interesting:

plεj = 1 + εj(g)2 ≤ 1 + 2(p− 1) = 2p− 1 =⇒ lεj = 1 and εj(g) =
p− 1

2
.

Thus g =
∑
j εj(g)ej = p−1

2 (e1 + e2). However, for any α such that 1 ≤ α ≤ p−3
2

we have

pl(p−2α)ε1+(p−1)ε2 = pl(p−1)ε1+(p−2α)ε2 = (p− 2α) + (p− 1) + [
p− 1

2
(2p− (2α+ 1))]p2

= 2p− (2α+ 1) + [α+
p+ 1

2
]p2

= 2p− (2α+ 1) + 2α+ p+ 1 = 3p.

This implies l(p−2α)ε1+(p−1)ε2 = l(p−1)ε1+(p−2α)ε2 = 3. In other words, each value
of α gives two distinct χ1, χ2 ∈ G∗ for which lχ1

= lχ2
= 3. However, when p ≥ 7,

we can always assume either α equals to 1 or 2, which implies pg(X) ≥ 4. Instead,
for p = 5, we easily compute pg(X) = 2.

It remains the last fourth case. We can observe that

plεj = 1 + εj(g1) + εj(g2) ≤ 1 + (p− 1) + (p− 1) = 2p− 1

=⇒ lεj = 1 and εj(g2) = p− 1− εj(g1).

Hence g2 = (p − 1)(e1 + e2) − g1. In other words, for any choice of g1 we get a
distinct family of (2, p)-planes. We compute the geometric genus of each of these
(2, p)-planes and we show that they are not equal to three.

From the Remark 2.11 we know that they have irregularity zero. Hence using
Noether formula we get

pg(X) =
1

12
(K2

X + e(X))− 1.
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The self-intersection of a canonical divisor is computable via [8, Proposition 4.2]:

K2
S = p2

(
−3 +

p− 1

p
4

)2

= (p− 4)2.

Instead, to determine e(X) we use the formula of Proposition 2.10:

e(X) = p2
(

3− 4 · 2 · p− 1

p
+ 6

(p− 1)2

p2

)
= 3p2 − 8p2 + 8p+ 6p2 − 12p+ 6

= p2 − 4p+ 6.

This means

pg(X) =
1

6
(p− 1)(p− 5).

However, it is straightforward to see that no value of p may attain pg(X) equal to
three. �

We can finally state and prove the main theorem of this note.

Theorem 4.22. Let p ≥ 3 be a prime number. All smooth (k, p)-covers X of
the plane with geometric genus 3 have p = 3 and are regular surfaces with ample
canonical class.

They form four unirational families, that we labeled as A1, A2, B3, C2, in a
way that A1 is a family of triple planes, A2 and C2 are two families of bi-triple
planes and B3 is a family of (3, 3)-planes.

The degree of the canonical map ϕKX is constant in each family.
We summarize in the following table the modular dimension (the dimension

of its image in the Gieseker moduli space of the surfaces of general type) of each
family, and the values of K2

X and degϕKX of each surface in the family: The

Family A1 A2 B3 C2

mod. dim. 19 7 3 7
K2
X 3 9 3 9

degϕKX 3 9 3 3

canonical map is a morphism of degree K2
X on P2 unless X of type C2, in which

case the canonical map is a rational map of degree K2
X − 3 · 2 = 3 undefined at 3

points.

Proof. From the Remark 2.11, each surface X that is a Galois cover π : X → P2

has irregularity zero.
The value of the self-intersection of the canonical class follows by the formula

(see [8, (4.8)])

K2 = 3k−2

−9 + 2
∑
g∈G

dg

2

.
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By Propositions 4.6, 4.17, 4.19, the canonical system of X is base point free unless
X is of type C2, in which case it has three base points with schematic multiplicity
2. So (blowing up the base points in this last case) we get a surface with canonical
system having movable part of self intersection as in the third line of the table
above, so strictly positive. Then the canonical map is not composed with a pencil.
Since pg = 3 then the canonical map of this surface is a morphism on P2 of the
given degree.

The families are parametrized by a Zariski open subset of a product of pro-
jective spaces, the complete linear systems to which the divisors |Dg|, quoted by
the faithful action of PGL(3), a group of dimension 8. Since the surfaces are of
general type, their automorphism group is finite and therefore it contains only
finitely many subgroups of the form (Z/3Z)k, which implies that the map from
this quotient to the Gieseker moduli space of the surfaces of general type is finite.
So the modular dimension of each family equals

−8 +
∑

dim |Dg|

which gives the modular dimensions in the table above. As an example, the family
C2 depends on the choice of three lines, and a cubic so its modular dimension is

−8 + 3 · 2 + 9 = 7.

�
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